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Abstract— The correlation coefficient is the method for presenting the relationship between features and labels. The present research 

work aims to map a relationship among correlation coefficient, performance, and overfitting of the regression models. To carry out the 

present study, the consistency limits and compaction parameters of soil are used. The datasets are collected from the published articles. 

Furthermore, the datasets are divided into training, testing, and validation dataset. The training datasets are subdivided from 50% to 100% 

at 10% intervals. The simple linear regression, simple polynomial regression, and multiple linear regression analyses are performed to 

study the correlation coefficient and performance relationship. The results show that the correlation coefficient influences the performance 

of regression models. The moderately (0.61≥CC≤0.80) correlated datasets predict consistency limits of soil with better performance. The 

excellent prediction of OMC and MDD can be achieved if very strongly (0.81≥CC≤1.0) correlated consistency limits features and strongly 

(0.61≥CC≤0.80) correlated sand and fine content features exist in the dataset. It is concluded that the overfitting of regression models is 

decreased because of very strongly correlated datasets. The sensitivity analysis shows that consistency limits are highly influenced by fine 

content, and compaction parameters are highly influenced by fine content, LL, PL, and PI. 

Index Terms— Correlation coefficient, Polynomial Regression, Consistency Limits, Compaction Parameters, Multiple Linear Regression 

Anaylsis, Soil Properties,    

——————————      —————————— 

1 INTRODUCTION                                                                     

n India, majorly five types of soil are found, i.e., alluvial 
deposits, black cotton soil, lateritic soils, desert soils, and 
marine deposits [3]. Every soil has consistency limits, com-

paction parameters, and strength parameters. The liquid limit, 
plasticity index, plastic limits are the consistency limits or At-
terberg's limits. The liquid limit is determined experimentally 
using the Casagrande and cone penetration methods. The 
plastic limit of soil is determined by preparing 3mm thread at 
suitable water content. The optimum moisture content (OMC) 
and maximum dry density (MDD) are compaction parameters 
of soil. The standard and modified proctor test is performed to 
determine the optimum moisture content and maximum dry 
density of soil. The most popular method for determining 
OMC and MDD is the standard proctor test or light compac-
tion test. The consistency limits and compaction parameters 
play an important role in every civil engineering project. The 
soil is classified into cohesive and cohesionless soil. Cohesive 
soils have high consistency limits than cohesionless soil. 

The laboratory procedures for determining consistency limits 
and compaction parameters of soil are time-consuming. There-
fore, numerous researchers evolved different methodologies 
and applied them to compute consistency limits and compac-
tion parameters. The multi expression programming predicts 
the compaction parameters with training performances of 

0.916 (for OMC) & 0.872 (for MDD) and testing performance of 
0.923 (for OMC) & 0.858 (for MDD) if optimum moisture con-
tent has COD of 0.263, 0.324, 0.48, 0.164, 0.482, & 0.027 with G, 
S, FC, LL, PL, & E, respectively, and maximum dry density has 
COD of 0.304, 0.265, 0.447, 0.243, 0.541, and 0.031 with G, S, 
FC, LL, PL, and E, respectively. The fine content and plastic 
limit affect the OMC of soil [15]. The support vector machine 
predicts the compaction parameters of soil if the liquid limit is 
strongly related to MDD than OMC [6]. The OMC increases 
with LL, but MDD decreases. The PL has linearity with OMC 
and MDD but unlike the liquid limit. Therefore, the LL is es-
sential for predicting OMC and MDD [4]. The plasticity index 
of soil increases with clay content. Therefore, the plasticity 
index significantly impacts the OMC and MDD of soil [8]. 

The maximum dry density and optimum moisture content 
have a correlation coefficient of 0.70-0.90 and 0.74-0.92 with 
liquid limit and plastic limit, respectively. Therefore, the 
GMDH-ANN model predicts the OMC and MDD with a test-
ing performance of 0.96 and 0.93, respectively. Furthermore, 
the cosine amplitude method shows that the LL and plastic 
limit influence the OMC and MDD [2]. The input parameters 
coefficient of uniformity and D30 of soil has COD of 0.74 and 
0.81 for OMC and MDD, respectively, in multiple regression 
analysis [11]. The artificial neural network predicts OMC and 
MDD of soil with COD of 0.8691 and 0.8531, respectively [12]. 
The S, FC, D50, and Cu have a correlation coefficient of 0.447, 
0.431, 0.332, 0.774, and 0.42 with maximum dry density. Simi-
larly, S, Fc, D50, and Cu have a correlation coefficient of 0.309, 
0.284, 0.205, 0.455 with optimum moisture content. The sand 
content is susceptible to OMC and MDD of soil. Therefore, the 
MARS approach performs better than the SVM and ANN in 
predicting OMC and MDD of soil [9]. The input parameters 
LL, PI, and E, predict the OMC and MDD of soil with ±9.5% 
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and ±2.5% accuracy at a 95% confidence interval [7]. The input 
parameters sand, silt, and clay content predict the LL, PL, and 
PI of soil using ANN and ANFIS. The ANN model predicts 
LL, PL, PI with COD of 0.928, 0.974, and 0.976. Thus, ANFIS 
predicts LL, PL, and PI better than artificial neural networks 
[10]. The prediction of soil properties using artificial neural 
networks depends on datasets' quantity and quality [1]. The 
multiple regression equation of gravel, S, FC, LL, and PI has 
0.987 and 0.999 correlation coefficients (R) with OMC and 
MDD. Therefore, the GEP predicts OMC and MDD better than 
the MLR approach [13]. The literature shows that the relation-
ship among correlation coefficient, performance and overfit-
ting has not been mapped using regression analysis and for 
regression models. Thus, the novelty of the present study is  
(i) Determine the correlation coefficient for 50%, 60%, 70%, 

80%, 90%, and 100% of 190 training dataset.  
(ii) Determine the effect of the different training datasets on 

has been studied in predicting the consistency limits and 
compaction parameters of soil.  

(ii) The effect of the correlation coefficient has been studied 
for the performance of regression models. 

(iii) The effect of the correlation coefficient has been studied 
for the overfitting of regression models. 

2 DATA COLLECTION AND ANALYSIS 

The data source, division of training datasets, descriptive sta-
tistics, and Pearson's product-moment correlation coefficient 
are discussed in this section. 

2.1 Data Source 

In this research work, 332 datasets were collected from differ-
ent sources. The datasets are divided into training, testing, and 
validation of the models. The detail of the data source is given 
in Table 1. 

TABLE 1 – DATA SOURCES 

Data Type Description Numbers 

Training 

Benson C. H. et al. (1994) 67 

Benson C. H. et al. (1995) 13 

Najjar Y. M. et al. (1996) 47 

Nagaraj H. B. et al. (2014) 44 

O. Gunaydin (2008) 73 

NG. K. S. (2015) 09 

Testing O. Gunaydin (2008) 53 

Validation 

Ibrahim A. O. (2013), Vukićević M. 

(2013), Khalid F. (2015), Senol A. 

(2002), Wathiq Al-Jaban (2019), Tuncer 

B. (2006), Kamal M. H. I. I. (2014). Er-

dem O. T. (2005), Tayel El-Hasan 

(2014), IHRB Project (2005), Kawther Y. 

(2018a), Kawther Y (2018b), Nahal S. 

(2018a, 2018b), Xiaobin Z. (2020), K. V. 

Manjunath (2012), Rana A (2020), Fat-

tah M. Y. (2013), Wathiq Al-Jabban 

(2017), Hawkar H. I. (2019), Rizgar A. 

(2020), Guoqid X. (2021) 

26 

2.2 Preprocessing of Dataset 

Preprocessing is a method of removing missing data and out-
liers from the datasets and transforming raw data into an un-
derstandable form. The min-max normalization function has 
transformed the datasets. 

2.3 Descriptive Statistics 

In the present research work, the minimum, maximum, mean 
(average), standard deviation (St. Dev), and confidence inter-
val (CL) at 95% is determined for each feature of the dataset. 
The descriptive statistics of training datasets of consistency 
limits with OMC & MDD are shown in Table 2. 

 

TABLE 2 – DESCRIPTIVE STATISTICS OF TRAINING DATASETS 

Features Min Max Mean StDev CL Min Max Mean StDev CL Min Max Mean StDev CL 

- 50% Training Datasets 60% Training Datasets 70% Training Datasets 

S (%) 3.02 70.28 30.71 18.14 3.70 3.02 70.28 28.59 17.37 3.22 3.02 70.28 28.54 16.92 2.90 

FC (%) 25.65 96.98 67.15 19.41 3.95 25.65 96.98 69.32 18.54 3.44 25.65 96.98 69.15 18.01 3.09 

S:FC 0.03 2.36 0.61 0.56 0.11 0.03 2.36 0.55 0.54 0.10 0.03 2.36 0.53 0.51 0.09 

LL (%) 21.58 62.21 34.85 9.87 2.01 21.97 65.13 36.81 10.56 1.96 21.34 65.13 35.48 10.67 1.83 

PL (%) 5.27 25.91 14.00 4.76 0.97 5.23 29.46 14.72 5.29 0.98 4.63 29.46 14.03 5.34 0.92 

PI (%) 13.74 38.72 20.85 5.53 1.13 14.94 38.72 22.09 5.86 1.09 13.74 38.72 21.45 5.87 1.01 

OMC (%) 9.30 30.40 15.52 4.32 0.88 9.00 30.40 16.10 4.60 0.85 9.00 30.40 15.89 4.56 0.78 

MDD (g/cc) 1.44 2.01 1.77 0.12 0.02 1.44 2.01 1.75 0.13 0.02 1.44 2.01 1.75 0.13 0.02 

- 80% Training Datasets 90% Training Datasets 100% Training Datasets 

S (%) 3.02 70.28 31.15 17.60 2.82 3.02 70.28 29.53 18.14 2.74 3.02 70.28 29.29 17.29 2.47 

FC (%) 25.65 96.98 66.72 18.46 2.96 25.65 96.98 68.54 19.04 2.87 25.65 96.98 68.78 18.08 2.59 

S:FC 0.03 2.36 0.61 0.54 0.09 0.03 2.36 0.57 0.53 0.08 0.03 2.36 0.55 0.51 0.07 

LL (%) 21.34 65.13 34.51 10.35 1.66 21.34 65.13 35.68 10.63 1.60 21.34 65.13 35.41 10.40 1.49 

PL (%) 4.63 29.46 13.70 5.34 0.86 4.63 29.46 14.17 5.41 0.82 4.63 29.46 14.03 5.28 0.75 

PI (%) 13.74 38.72 20.81 5.47 0.88 13.74 38.72 21.51 5.73 0.87 13.74 38.72 21.38 5.64 0.81 

OMC (%) 9.00 30.40 15.25 4.22 0.68 9.00 30.40 15.81 4.45 0.67 9.00 30.40 15.74 4.33 0.62 

MDD (g/cc) 1.45 2.01 1.77 0.12 0.02 1.44 2.01 1.76 0.13 0.02 1.44 2.01 1.76 0.12 0.02 
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2.4 Division of Training Dataset 

The training datasets are divided from 50% to 100% at 10% 
intervals to study the relationship among correlation coeffi-
cient, performance and overfitting of regression models, as 
shown in Table 3. 

TABLE 3 – DIVISION OF TRAINING DATASET 

Percentage Training Data 

50% 95 

60% 114 

70% 133 

80% 152 

90% 171 

100% 190 

2.5 Pearson’s Correlation Coefficient 

The correlation coefficient (CC) is the way to determine the 

strength of the linear relationship between independent and 
dependent variables. The Linear or curvilinear correlation, 
scatter diagram method, Pearson's product-moment correla-
tion coefficient, spearman's rand correlation coefficient are the 
methods for determining correlation coefficient or relation-
ship. The relationship of the pair of datasets according to the 
range of correlation coefficients is given in Table 4 [5]. 

TABLE 4 – RELATIONSHIP LEVEL 

Correlation 

Coefficient 

Relationship 

Level 

±0.81 - ±1.00 Very Strong 

±0.61 - ±0.80 Strong 

±0.41 - ±0.60 Moderate 

±0.21 - ±0.40 Weak 

±0.00 - ±0.20 No relationship 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) CC for 50% training datasets (b) CC for 60% training datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

(c) CC for 70% training datasets (d) CC for 80% training datasets 

 

 

 

 

 

 

 

 

 

 

 

 

 

(e) CC for 90% training datasets (f) CC for 100% training datasets 

Fig. 1. Correlation coefficient for different percentages of training datasets 
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Fig. 2. depicts the correlation coefficient for LL, PL, PI, 
OMC, and MDD. The consistency limits (LL, PI, PL) get affect-
ed by sand and fine content. Therefore, sand and fine contents 
are selected as input parameters to predict LL, PI, and PL. 
Similarly, S, FC, LL, PL, and PI are selected as input parame-
ters to predict OMC and MDD of soil. Fig. 2 shows that the LL, 
PL, and PI strongly correlate with sand (S) and fine content 
(FC) for 50-100% datasets. Fig. 2 also shows that OMC has a 
strong to very strong relationship with input parameters. 
Similarly, Fig. 2 also depicts that MDD strongly relationship 
with input parameters. It is also observed that the correlation 
coefficient or level of relationship increases by increasing da-
tasets. 

3 METHODOLOGIES 

The simple linear and polynomial regression analysis is per-
formed to determine the effect of the correlation coefficient on 
the performance and overfitting of the regression model. In 
addition, the predictive multiple linear regression models are 
also constructed to study the effect of multi-input parameters 
on the performance and overfitting of regression models. The 
developed simple linear and polynomial regression equations 
for consistency limits are given in Table 5. 

TABLE 5 – EQUATIONS DERIVED FROM SIMPLE LINEAR AND POLYNOMIAL REGRESSION ANALYSIS FOR LL, PL, PI 

Data Input Simple Linear Equations R2 Eq. Simple Polynomial Equations R2 Eq. 

50% 

S LL’ = -0.3674*S + 46.131 0.4561 (2) LL’ = 0.0089*S2 - 0.9473*S + 52.708 0.5334 (38) 

FC LL’ = 0.3324*FC + 12.529 0.4273 (3) LL’ = 0.0079*FC2 - 0.6829*FC + 42.216 0.5198 (39) 

S PL’ = -0.1597*S + 18.904 0.3706 (4) PL’ = 0.0036*S2 - 0.3949*S + 21.572 0.4252 (40) 

FC PL’ = 0.1463*FC + 4.1771 0.3556 (5) PL’= 0.0036*FC2 - 0.3171*FC + 17.728 0.4384 (41) 

S PI’ = -0.2077*S + 27.227 0.4643 (6) PI’ = 0.0053*S2 - 0.5523*S + 31.137 0.5512 (42) 

FC PI’ = 0.1861*FC + 8.3519 0.4268 (7) PI’ = 0.0043*FC2 - 0.3657*FC + 24.488 0.5139 (43) 

60% 

S LL’ = -0.4293*S + 49.084 0.4982 (8) LL’ = 0.0083*S2 - 0.9815*S + 55.636 0.5509 (44) 

FC LL’ = 0.3832*FC + 10.252 0.4521 (9) LL’ = 0.007*FC2 - 0.5126*FC + 36.371 0.5082 (45) 

S PL’ = -0.1893*S + 20.13 0.3869 (10) PL’ = 0.0036*S2 - 0.4273*S + 22.954 0.4260 (46) 

FC PL’ = 0.1708*FC + 2.8801 0.3587 (11) PL’ = 0.0034*FC2 - 0.2675*FC + 15.658 0.4123 (47) 

S PI’ = -0.24*S + 28.954 0.5056 (12) PI’ = 0.0047*S2 - 0.5542*S + 32.683 0.5609 (48) 

FC PI’ = 0.2124*FC + 7.3718 0.4509 (13) PI’ = 0.0036*FC2 - 0.2452*FC + 20.712 0.4985 (49) 

70% 

S LL’ = -0.4446*S + 48.168 0.4967 (14) LL’ = 0.0102*S2 - 1.1032*S + 55.777 0.5699 (50) 

FC LL’ = 0.4021*FC + 7.6788 0.4606 (15) LL’ = 0.0086*FC2 - 0.7205*FC + 41.252 0.5366 (51) 

S PL’ = -0.2028*S + 19.82 0.4125 (16) PL’ = 0.0047*S2 - 0.5078*S + 23.343 0.4751 (52) 

FC PL’ = 0.1856*FC + 1.1992 0.3915 (17) PL’ = 0.0044*FC2 - 0.3895*FC + 18.4 0.4712 (53) 

S PI’ = -0.2418*S + 28.349 0.4856 (18) PI’ = 0.0055*S2 - 0.5954*S + 32.434 0.5554 (54) 

FC PI’ = 0.2165*FC + 6.4796 0.4415 (19) PI’ = 0.0042*FC2 - 0.3309*FC + 22.852 0.5013 (55) 

80% 

S LL’ = -0.4092*S + 47.255 0.4844 (20) LL’ = 0.0107*S2 - 1.1459*S + 56.472 0.5721 (56) 

FC LL’ = 0.3854*FC + 8.7933 0.4725 (21) LL’ = 0.0096*FC2 - 0.8389*FC + 44.491 0.5658 (57) 

S PL’ = -0.1996*S + 19.911 0.4326 (22) PL’ = 0.0051*S2 - 0.5471*S + 24.26 0.5059 (58) 

FC PL’ = 0.188*FC + 1.1518 0.4222 (23) PL’ = 0.0049*FC2 - 0.4346*FC + 19.305 0.5127 (59) 

S PI’ = -0.2096*S + 27.343 0.4555 (24) PI’ = 0.0057*S2 - 0.5988*S + 32.212 0.5432 (60) 

FC PI’ = 0.1974*FC + 7.6415 0.4441 (25) PI’ = 0.0047*FC2 - 0.4043*FC + 25.186 0.5248 (61) 

90% 

S LL’ = -0.417*S + 47.995 0.5065 (26) LL’ = 0.0085*S2 - 0.9801*S + 54.403 0.5576 (62) 

FC LL’ = 0.3919*FC + 8.8183 0.4927 (27) LL’ = 0.0078*FC2 - 0.6262*FC + 39.066 0.5497 (63) 

S PL’ = -0.1962*S + 19.964 0.4332 (28) PL’ = 0.0037*S2 - 0.4407*S + 22.746 0.4704 (64) 

FC PL’ = 0.1848*FC + 1.504 0.4234 (29) PL’ = 0.0038*FC2 - 0.3069*FC + 16.111 0.4748 (65) 

S PI’ = -0.2209*S + 28.031 0.4888 (30) PI’ = 0.0048*S2 - 0.5394*S + 31.657 0.5452 (66) 

FC PI’ = 0.2071*FC + 7.3143 0.4735 (31) PI’ = 0.004*FC2 - 0.3193*FC + 22.955 0.5260 (67) 

100% 

S LL’ = -0.4175*S + 47.636 0.4817 (32) LL’ = 0.0092*S2 - 1.0244*S + 54.806 0.5440 (68) 

FC LL’ = 0.3898*FC + 8.5949 0.4593 (33) LL’ = 0.0081*FC2 - 0.6662*FC + 40.176 0.5234 (69) 

S PL’ = -0.1949*S + 19.742 0.4080 (34) PL’ = 0.0039*S2 - 0.4559*S + 22.825 0.4528 (70) 

FC PL’ = 0.1834*FC + 1.4182 0.3950 (35) PL’ = 0.0039*FC2 - 0.3268*FC + 16.676 0.4532 (71) 

S PI’ = -0.2226*S + 27.894 0.4656 (36) PI’ = 0.0052*S2 - 0.5685*S + 31.981 0.5345 (72) 

FC PI’ = 0.2064*FC + 7.1767 0.4380 (37) PI’ = 0.0042*FC2 - 0.3394*FC + 23.499 0.4963 (73) 

Table 5 shows that the coefficient of determination (R2) in-
creases by increasing the percentage of datasets for simple 
linear regression analysis. Similarly, the simple polynomial 
regression analysis shows that the coefficient of determination 
(R2) increased by increasing the percentage of datasets in the 

case of LL, PI, and PL. The comparison of R2 of simple linear 
and polynomial regression analysis shows that the nonlinear 
analysis gives better results than linear analysis for consisten-
cy limits. Similarly, the developed simple linear and polyno-
mial regression equations to predict OMC are given in Table 6.
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TABLE 6. EQUATIONS DERIVED FROM SIMPLE LINEAR AND POLYNOMIAL REGRESSION ANALYSIS FOR OMC 

Data Input Simple Linear Equations R2 Eq. Simple Polynomial Equations R2 Eq. 

50% 

S OMC’ = -0.1917*S + 21.405 0.6488 (74) OMC’ = 0.0028*S2 - 0.3726*S + 23.457 0.6882 (104) 

FC OMC’ = 0.1755*FC + 3.7323 0.6228 (75) OMC’ = 0.002*FC2 - 0.0853*FC + 11.36 0.6547 (105) 

LL OMC’ = 0.3866*LL + 2.0459 0.7812 (76) OMC’ = 0.0063*LL2 - 0.1069*LL + 10.974 0.8057 (106) 

PL OMC’ = 0.6931*PL + 5.816 0.5842 (77) OMC’ = 0.0376*PL2 - 0.4228*PL + 13.222 0.6397 (107) 

PI OMC’ = 0.7179*PI + 0.5504 0.8455 (78) OMC’ = 0.0087*PI2 + 0.2992*PI + 5.2561 0.8506 (108) 

60% 

S OMC’ = -0.2108*S + 22.123 0.6348 (79) OMC’ = 0.0024*S2 - 0.3678*S + 23.985 0.6573 (109) 

FC OMC’ = 0.1895*FC + 2.9592 0.5843 (80) OMC’ = 0.0015*FC2 - 0.0034*FC + 8.5847 0.5980 (110) 

LL OMC’ = 0.3923*LL + 1.6553 0.8130 (81) OMC’ = 0.0051*LL2 - 0.0089*LL + 9.0002 0.8293 (111) 

PL OMC’ = 0.6595*PL + 6.3892 0.5753 (82) OMC’ = 0.0216*PL2 + 0.0085*PL + 10.683 0.6003 (112) 

PI OMC’ = 0.7375*PI - 0.1982 0.8851 (83) OMC’ = 0.0053*PI2 + 0.4779*PI + 2.7848 0.8866 (113) 

70% 

S OMC’ = -0.2119*S + 21.938 0.6171 (84) OMC’ = 0.0028*S2 - 0.3899*S + 23.995 0.6464 (114) 

FC OMC’ = 0.1909*FC + 2.688 0.5682 (85) OMC’ = 0.0018*FC2 - 0.0463*FC + 9.7846 0.5868 (115) 

LL OMC’ = 0.3881*LL + 2.1197 0.8241 (86) OMC’ = 0.0047*LL2 + 0.0136*LL + 8.901 0.8381 (116) 

PL OMC’ = 0.6642*PL + 6.5716 0.6048 (87) OMC’ = 0.0219*PL2 + 0.0067*PL + 10.86 0.6306 (117) 

PI OMC’ = 0.7329*PI + 0.1704 0.8888 (88) OMC’ = 0.0075*PI2 + 0.3665*PI + 4.3363 0.8920 (118) 

80% 

S OMC’ = -0.1876*S + 21.098 0.6131 (89) OMC’ = 0.0029*S2 - 0.388*S + 23.605 0.6521 (119) 

FC OMC’ = 0.1762*FC + 3.495 0.5946 (90) OMC’ = 0.0021*FC2 - 0.0856*FC + 11.13 0.6203 (120) 

LL OMC’ = 0.3668*LL + 2.5939 0.8099 (91) OMC’ = 0.005*LL2 - 0.0216*LL + 9.5632 0.8290 (121) 

PL OMC’ = 0.6282*PL + 6.6496 0.6325 (92) OMC’ = 0.0259*PL2 - 0.1434*PL + 11.626 0.6765 (122) 

PI OMC’ = 0.7149*PI + 0.374 0.8586 (93) OMC’ = 0.0083*PI2 + 0.3145*PI + 4.8645 0.8628 (123) 

90% 

S OMC’ = -0.1948*S + 21.561 0.6316 (94) OMC’ = 0.0025*S2 - 0.3593*S + 23.433 0.6566 (124) 

FC OMC’ = 0.1829*FC + 3.2715 0.6134 (95) OMC’ = 0.0018*FC2 - 0.0451*FC + 10.045 0.6297 (125) 

LL OMC’ = 0.3782*LL + 2.3132 0.8175 (96) OMC’ = 0.004*LL2 + 0.0614*LL + 8.03 0.8289 (126) 

PL OMC’ = 0.6433*PL + 6.6922 0.6120 (97) OMC’ = 0.0205*PL2 + 0.0297*PL + 10.679 0.6364 (127) 

PI OMC’ = 0.7287*PI + 0.1339 0.8819 (98) OMC’ = 0.0058*PI2 + 0.4481*PI + 3.3076 0.8838 (128) 

100% 

S OMC’ = -0.1959*S + 21.478 0.6171 (99) OMC’ = 0.0028*S2 - 0.3815*S + 23.671 0.6449 (129) 

FC OMC’ = 0.1825*FC + 3.1906 0.5682 (100) OMC’ = 0.0019*FC2 - 0.0664*FC + 10.631 0.6002 (130) 

LL OMC’ = 0.375*LL + 2.462 0.8241 (101) OMC’ = 0.0045*LL2 + 0.0202*LL + 8.857 0.8247 (131) 

PL OMC’ = 0.6364*PL + 6.8091 0.6048 (102) OMC’ = 0.0211*PL2 + 0.0088*PL + 10.88 0.6265 (132) 

PI OMC’ = 0.7183*PI + 0.3851 0.8888 (103) OMC’ = 0.0074*PI2 + 0.3607*PI + 4.4361 0.8774 (133) 

From Table 6, the following points are observed, (i) the 
sand content, liquid limit, and plasticity index has a strong to 
the very strong relationship with optimum moisture content 
for simple linear regression analysis, (ii) The fine content and 
plastic limit have moderate to strong relationship with opti-
mum moisture content for simple linear regression analysis, 
(iii) the liquid limit and plasticity index has very strong rela-
tionship with optimum moisture content for simple polyno-
mial regression analysis, (iv) the sand content, fine content, 
and plastic limit have a strong relationship with OMC for 
simple polynomial regression analysis. The comparison of 
coefficient of determination also shows that the nonlinear re-
gression analysis gives better training performance than linear 
regression analysis. Thus, the developed simple linear and 
polynomial regression equations for predicting MDD are giv-
en in Table 7. 

From Table 7, the following points are observed, (i) the 
sand, fine content, liquid limit, and plasticity index are strong-
ly correlated with a maximum dry density of soil, (ii) the plas-
tic limit is moderately correlated with a maximum dry density 
of soil.  

The multiple linear regression analysis is also performed to 
predict the LL, PL, PI, OMC, and MDD of soil and determine 

the effect of correlation coefficient on performance and overfit-
ting of multiple linear regression model. The following equa-
tions are derived from the multiple linear regression analysis 
at different percentages of training datasets. 
50% Training Dataset 

LL = -0.3513*S + 0.0156*FC + 44.59 R2 = 0.4562 (194) 

PL = -0.1266*S + 0.0321*FC + 15.73 R2 = 0.3717 (195) 

PI = -0.2247*S - 0.0165*FC + 28.85 R2 = 0.4645 (196) 

OMC = -0.0282*S + 0.0507*FC + 
0.5884*LL - 0.6572*PL + 0*PI + 1.67 

R2 = 0.9102 (197) 

MDD = 0.0009*S - 0.0022*FC - 
0.0148*LL + 0.0183*PL + 0*PI + 2.14 

R2 = 0.9097 (198) 

60% Training Dataset 

LL = -0.503*S - 0.0716*FC + 56.15 R2 = 0.4993 (199) 

PL = -0.1946*S - 0.0051*FC + 20.63 R2 = 0.3869 (200) 

PI = -0.3084*S - 0.0664*FC + 35.51 R2 = 0.5086 (201) 

OMC = -0.0432*S + 0.0244*FC + 
0.6035*LL - 0.6157*PL + 0*PI + 2.48 

R2 = 0.9188 (202) 

MDD = 0.0009*S - 0.0017*FC - 
0.0156*LL + 0.0174*PL + 0*PI + 2.15 

R2 = 0.9113 (203) 
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TABLE 7. EQUATIONS DERIVED FROM SIMPLE LINEAR AND POLYNOMIAL REGRESSION ANALYSIS FOR MDD 

Data Input Simple Linear Equations R2 Eq. Simple Polynomial Equations R2 Eq. 

50% 

S MDD’ = 0.0057*S + 1.5976 0.7269 (134) MDD’ = -3E-05*S2 + 0.0078*S + 1.5738 0.7337 (164) 

FC MDD’ = -0.0052*FC + 2.122 0.7100 (135) MDD’ = -2E-05*FC2 - 0.0023*FC + 2.036 0.7153 (165) 

LL MDD’ = -0.0103*LL + 2.129 0.7088 (136) MDD’ = -0.0001*LL2 - 2E-05*LL + 1.944 0.7224 (166) 

PL MDD’ = -0.0182*PL + 2.026 0.5190 (137) MDD’ = -0.001*PL2 + 0.0106*PL + 1.8351 0.5665 (167) 

PI MDD’ = -0.0192*PI + 2.1717 0.7788 (138) MDD’ = -8E-05*PI2 - 0.0155*PI + 2.1304 0.7793 (168) 

60% 

S MDD’ = 0.0061*S + 1.5717 0.6893 (139) MDD’ = -4E-05*S2 + 0.009*S + 1.5364 0.6999 (169) 

FC MDD’ = -0.0055*FC + 2.128 0.6527 (140) MDD’ = -2E-05*FC2 - 0.0029*FC + 2.051 0.6562 (170) 

LL MDD’ = -0.0105*LL + 2.131 0.7597 (141) MDD’ = -8E-05*LL2 - 0.0039*LL + 2.010 0.7655 (171) 

PL MDD’ = -0.0174*PL + 2.001 0.5252 (142) MDD’ = -0.0006*PL2 + 0.0001*PL + 1.886 0.5490 (172) 

PI MDD’ = -0.0198*PI + 2.1836 0.8412 (143) MDD’ = 0.0002*PI2 - 0.0275*PI + 2.2718 0.8430 (173) 

70% 

S MDD’ = 0.0061*S + 1.5802 0.6615 (144) MDD’ = -6E-05*S2 + 0.0101*S + 1.5343 0.6803 (174) 

FC MDD’ = -0.0056*FC + 2.139 0.6271 (145) MDD’ = -3E-05*FC2 - 0.0013*FC + 2.010 0.6351 (175) 

LL MDD’ = -0.0104*LL + 2.122 0.7630 (146) MDD’ = -9E-05*LL2 - 0.0034*LL + 1.997 0.7692 (176) 

PL MDD’ = -0.0174*PL + 1.999 0.5400 (147) MDD’ = -0.0006*PL2 - 0.0002*PL + 1.887 0.5628 (177) 

PI MDD’ = -0.0199*PI + 2.18 0.8452 (148) MDD’ = 1E-05*PI2 - 0.0203*PI + 2.1856 0.8452 (178) 

80% 

S MDD’ = 0.0056*S + 1.5966 0.6887 (149) MDD’ = -5E-05*S2 + 0.0093*S + 1.5499 0.7057 (179) 

FC MDD’ = -0.0053*FC + 2.128 0.6871 (150) MDD’ = -3E-05*FC2 - 0.0012*FC + 2.006 0.6954 (180) 

LL MDD’ = -0.0099*LL + 2.114 0.7437 (151) MDD’ = -8E-05*LL2 - 0.0037*LL + 2.002 0.7495 (181) 

PL MDD’ = -0.0169*PL + 2.003 0.5733 (152) MDD’ = -0.0007*PL2 + 0.0033*PL + 1.873 0.6109 (182) 

PI MDD’ = -0.0194*PI + 2.176 0.7969 (153) MDD’ = 8E-05*PI2 - 0.0234*PI + 2.2208 0.7975 (183) 

90% 

S MDD’ = 0.0057*S + 1.5883 0.6903 (154) MDD’ = -5E-05*S2 + 0.0089*S + 1.5528 0.7016 (184) 

FC MDD’ = -0.0054*FC + 2.13 0.6816 (155) MDD’ = -3E-05*FC2 - 0.002*FC + 2.0273 0.6863 (185) 

LL MDD’ = -0.0103*LL + 2.124 0.7606 (156) MDD’ = -8E-05*LL2 - 0.0043*LL + 2.016 0.7657 (186) 

PL MDD’ = -0.0173*PL + 2.002 0.5555 (157) MDD’ = -0.0006*PL2 + 6E-05*PL + 1.889 0.5801 (187) 

PI MDD’ = -0.02*PI + 2.1877 0.8363 (158) MDD’ = 6E-05*PI2 - 0.0231*PI + 2.2224 0.8366 (188) 

100% 

S MDD’ = 0.0058*S + 1.589 0.6717 (159) MDD’ = -5E-05*S2 + 0.0091*S + 1.549 0.6859 (189) 

FC MDD’ = -0.0054*FC + 2.131 0.6528 (160) MDD’ = -3E-05*FC2 - 0.0018*FC + 2.022 0.6584 (190) 

LL MDD’ = -0.0101*LL + 2.117 0.7523 (161) MDD’ = -9E-05*LL2 - 0.0034*LL + 1.995 0.7589 (191) 

PL MDD’ = -0.017*PL + 1.997 0.5457 (162) MDD’ = -0.0006*PL2 + 0.0002*PL + 1.885 0.5703 (192) 

PI MDD’ = -0.0196*PI + 2.1763 0.8252 (163) MDD’ = 1E-05*PI2 - 0.0203*PI + 2.184 0.8253 (193) 

 
70% Training Dataset 

LL = -0.4325*S + 0.0118*FC + 47.00 R2 = 0.4967 (204) 

PL = -0.1686*S + 0.0334*FC + 16.53 R2 = 0.4134 (205) 

PI = -0.2639*S - 0.0216*FC + 30.47 R2 = 0.4859 (206) 

OMC = -0.0574*S + 0.0106*FC - 
0.0186*LL + 0*PL + 0.6284*PI + 3.97 

R2 = 0.9212 (207) 

MDD = 0.0012*S - 0.0014*FC + 
0.0028*LL + 0*PL - 0.0195*PI + 2.13 

R2 = 0.9104 (208) 

80% Training Dataset 

LL = -0.2831*S + 0.1244*FC + 35.02 R2 = 0.4876 (209) 

PL = -0.1373*S + 0.0614*FC + 13.87 R2 = 0.4355 (210) 

PI = -0.1458*S + 0.063*FC + 21.15 R2 = 0.4585 (211) 

OMC = -0.0561*S + 0.014*FC + 
0.5724*LL - 0.5858*PL + 0*PI + 4.33 

R2 = 0.9045 (212) 

MDD = 0.0011*S - 0.0018*FC - 
0.0146*LL + 0.0168*PL + 0*PI + 2.13 

R2 = 0.8996 (213) 

90% Training Dataset 

LL = -0.3131*S + 0.1019*FC + 37.94 R2 = 0.5083 (214) 

PL = -0.139*S + 0.056*FC + 14.43 R2 = 0.4353 (215) 

PI = -0.1741*S + 0.0458*FC + 23.50 R2 = 0.4901 (216) 

OMC = -0.0489*S + 0.0188*FC - 
0.0327*LL + 0*PL + 0.6356*PI + 3.46 

R2 = 0.9201 (217) 

MDD = 0.0012*S - 0.0016*FC + 
0.0029*LL + 0*PL - 0.019*PI + 2.14 

R2 = 0.9156 (218) 

100% Training Dataset 

LL = -0.3674*S + 0.0495*FC + 42.76 R2 = 0.4822 (219) 

PL = -0.1485*S + 0.0458*FC + 15.23 R2 = 0.4095 (220) 

PI = -0.2188*S + 0.0037*FC + 27.53 R2 = 0.4656 (221) 

OMC = -0.0544*S + 0.0141*FC + 
0.5943*LL - 0.6201*PL + 0*PI + 4.02 

R2 = 0.9134 (222) 

MDD = 0.0012*S - 0.0016*FC - 
0.0157*LL + 0.0182*PL + 0*PI + 2.13 

R2 = 0.9066 (223) 

The ratio of sand to fine content is eliminated in the present 
work because the sand: fine content ratio has multicollinearity. 
The sand and fine content have a strong relationship, but the 
sand: fine content ratio has a moderate relationship. The sand: 
fine content ratio may reduce the performance of regression 
models. 
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4  RESULTS AND DISCUSSIONS 

A total of 96 equations are derived for each simple linear and 
polynomial regression analysis to predict consistency limits 
and compaction parameters. The proposed simple regression 
equations have a good coefficient of determination [14]. In 
addition, a total of 30 multi-linear equations are derived for 
predicting consistency limits and compaction parameters for 
different percentages of training datasets. The results of con-
sistency limits and compaction parameters are discussed be-
low. 

4.1 Prediction of Liquid Limit 

Equations 194, 199, 204, 209, 214, and 219 are used to predict 
the liquid limit of soil. The proposed multiple regression mod-
els of the liquid limit are tested and validated by 53 and 26 
datasets, respectively. Equations 194, 199, 204, 209, 214, and 
219 are derived at 50%, 60%, 70%, 80%, 90% and 100% training 
datasets, respectively. The training, testing, and validation 
performances of multi-linear regression (MRA) models are 
compared, as shown in Figs. 2 and 3. 

 

Fig. 2. Training, testing, validation performances (RMSE & MAE) of 

MRA models for LL 

 

Fig 3. Training, testing, validation performances (R) of MRA models for 

LL 

Figs. 2 and 3 show that equation 209 predicted the liquid 
limit of soil with the testing and validation performance of 
0.9226 and 0.8548, respectively. In addition, equation 209 pre-
dicted the liquid limit of soil with the testing and validation 
prediction error (RMSE) of 4.3649 and 6.7794, respectively. 
Therefore, equation 209 based MRA model is identified as the 
best architecture MRA model for LL. The training perfor-
mance increases by increasing the percentage of input parame-
ters [10]. On the other hand, equation 209 is developed using 
80% training datasets having a strong correlation with the liq-
uid limit. Therefore, it may be stated that the better perfor-

mance of the MRA model may be achieved by 80% training 
dataset or having a strong correlation with pair of the dataset. 
The overfitting of Eqs. 194, 199, 204, 209, 214, and 219 are also 
calculated, as shown in Fig. 4. 

 

Fig. 4. Overfitting of MRA models in predicting liquid limit 

Fig. 4 shows the overfitting of MRA models of liquid limit 
during testing and validation. The overfitting comparison 
shows that the equation 209 based MRA model predicted liq-
uid limit in testing and validation with overfitting of 1.0985 
and 0.7781, respectively. 

4.2 Prediction of Plastic Limit 

Equations 195, 200, 205, 210, 215, and 220 are used to predict 
the plastic limit of soil. The proposed multiple regression 
models of the plastic limit are tested and validated by 53 and 
26 datasets, respectively. Equations 194, 199, 204, 209, 214, and 
219 are derived at 50%, 60%, 70%, 80%, 90% and 100% training 
datasets, respectively. The training, testing, and validation 
performance of MRA models are compared, as shown in Figs. 
5 and 6. 

 

Fig. 5. Training, testing, validation performances (RMSE & MAE) of 

MRA models for PL 

 

Fig. 6. Training, testing, validation performances (R) of MRA models 

for PL 
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Figs. 5 and 6 show that equation 210 predicted the plastic 
limit of soil with the testing and validation performance of 
0.7461 and 0.7529, respectively. In addition, equation 210 pre-
dicted the plastic limit of soil with the testing and validation 
prediction error (RMSE) of 7.7976 and 5.2416, respectively. 
Therefore, equation 210 based MRA model is identified as the 
best architecture MRA model for PL. On the other hand, equa-
tion 210 is developed using 80% training datasets having a 
strong correlation with the plastic limit. Therefore, it may be 
stated that the better performance of the MRA model may be 
achieved by 80% training dataset or having a strong correla-
tion with pair of the dataset. The overfitting of Eqs. 195, 200, 
205, 210, 215, and 220 are also calculated, as shown in Fig. 7. 

 

Fig. 7. Overfitting of MRA models in predicting plastic limit 

Fig. 7 shows the overfitting of MRA models of plastic limit 
during testing and validation. The overfitting comparison 
shows that the equation 210 based MRA model predicted a 
plastic limit in testing and validation with overfitting of 2.2327 
and 1.5008, respectively. 

4.3 Prediction of Plasticity Index 

Equations 196, 201, 206, 211, 216, and 221 are used to predict 
the plasticity index of soil and derived at 50%, 60%, 70%, 80%, 
90% and 100% training datasets, respectively. The proposed 
multiple regression models of the plasticity index are tested 
and validated by 53 and 26 datasets, respectively. The training, 
testing, and validation performances of MRA models are 
compared, as shown in Figs. 8 and 9. 

Figs. 8 and 9 show that equation 201 predicted the plasticity 
index of soil with the testing and validation performance of 
0.8326 and 0.5927, respectively. In addition, equation 201 pre-
dicted the plasticity index of soil with the testing and valida-
tion prediction error (RMSE) of 3.8771 and 3.4213, respective-
ly. Therefore, equation 201 based MRA model is identified as 
the best architecture MRA model for PI. On the other hand, 
equation 201 is developed using 60% training datasets having 
a strong correlation with the plasticity index. Therefore, it may 
be stated that the better performance of the MRA model may 
be achieved by 60% training dataset or having a strong corre-
lation with pair of the dataset. The overfitting of Eqs. 196, 201, 
206, 211, 216, and 221 are also calculated, as shown in Fig. 10. 

Fig. 10 shows the overfitting of MRA models of plasticity 
index during testing and validation. The overfitting compari-
son shows that the equation 201 based MRA model predicted 
a plasticity index in testing and validation with overfitting of 

0.9476 and 0.8362, respectively. 

 

Fig. 8. Training, testing, validation performances (RMSE & MAE) of 

MRA models for PI 
 

Fig. 9 Training, testing, validation performances (R) of MRA models for 

PI 

 

 

Fig. 10. Overfitting of MRA models in predicting plasticity index 

4.4 Prediction of Optimum Moisture Content 

Equations 197, 202, 207, 212, 217, and 222 are used to predict 
the optimum moisture content of soil and derived at 50%, 
60%, 70%, 80%, 90% and 100% training datasets, respectively. 
The proposed multiple regression models of the OMC are 
tested and validated by 53 and 26 datasets, respectively. The 
training, testing, and validation performances of MRA models 
are compared, as shown in Figs. 11 and 12. 

Figs. 11 and 12 show that equation 207 predicted the OMC 
of soil with the testing and validation performance of 0.8824 
and 0.6630, respectively. In addition, equation 207 predicted 
the OMC of soil with the testing and validation prediction 
error (RMSE) of 4.2336 and 3.3026, respectively. Therefore, the 
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equation 207 based MRA model is identified as the best archi-
tecture MRA model for OMC. On the other hand, equation 207 
is developed using 70% training datasets having a strong to 
very strong correlation with the OMC. Therefore, it may be 
stated that the excellent performance of the MRA model may 
be achieved by 70% training dataset or having a strong-very 
strong correlation with pair of the dataset. The overfitting of 
Eqs. 197, 202, 207, 212, 217, and 222 are also calculated, as 
shown in Fig. 13. 

 

Fig. 11. Training, testing, validation performances (RMSE & MAE) of 

MRA models for OMC 
 

Fig. 12. Training, testing, validation performances (R) of MRA models 

for OMC 

 
 

Fig. 13. Overfitting of MRA models in predicting OMC 

Fig. 13 shows the overfitting of MRA models of OMC dur-
ing testing and validation. The overfitting comparison shows 
that the equation 207 based MRA model predicted OMC in 
testing and validation with overfitting of 3.3186 and 2.5888. 

4.5 Prediction of Maximum Dry Density 

Equations 198, 203, 208, 213, 218, and 223 are used to predict 
the maximum dry density of soil. The proposed multiple re-
gression models of the MDD are tested and validated by 53 
and 26 datasets, respectively. Equations 198, 203, 208, 213, 218, 
and 223 are derived at 50%, 60%, 70%, 80%, 90% and 100% 
training datasets, respectively. The training, testing, and vali-
dation performances of multi-linear regression (MRA) models 
are compared, as shown in Figs. 14 and 15. 

 

Fig. 14. Training, testing, validation performances (RMSE & MAE) of 

MRA models for MDD 
 

Fig. 15 Training, testing, validation performances (R) of MRA models 

for MDD 

Figs. 14 and 15 show that equation 218 predicted the MDD 
of soil with the testing and validation performance of 0.8799 
and 0.6430, respectively. In addition, equation 218 predicted 
the MDD of soil with the testing and validation prediction 
error (RMSE) of 0.1346 and 0.0981, respectively. Therefore, the 
equation 218 based MRA model is identified as the best archi-
tecture MRA model for MDD. On the other hand, equation 218 
is developed using 90% training datasets having a strong to 
very strong correlation with MDD. Therefore, it may be stated 
that the better performance of the MRA model may be 
achieved by 90% training dataset or having a strong-very 
strong correlation with pair of the dataset. The overfitting of 
Eqs. 198, 203, 208, 213, 218, and 223 are also calculated, as 
shown in Fig. 16. 

Fig. 16 shows the overfitting of MRA models of MDD dur-
ing testing and validation. The overfitting comparison shows 
that the equation 218 based MRA model predicted MDD in 
testing and validation with overfitting of 3.7085 and 2.7023, 
respectively. 
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Fig. 16. Overfitting of MRA models in predicting MDD 

5 SOIL CLASSIFICATION USING PREDICTED RESULTS 

The particle size distribution and consistency limits proce-
dures are used to classify soil. The particle size distribution 
classifies coarse-grained soils, and consistency limits classify 
fine-grained soils. The liquid limit and plasticity index are 
required to classify fine-grained soils. The liquid limit and 
plasticity index are predicted using Eqs. 209 and 201, respec-
tively, because of Eqs. 209 and 201 based MRA models outper-
formed other liquid limit and plasticity index models. The 
liquid limit and plasticity index MRA models are tested and 
validated by 53 and 26 datasets. Therefore, the test and valida-
tion soil datasets are classified, as shown in Figs. 17 and 18. 

 

Fig. 17 Classification of test soil dataset using Eqs. 209 and 201 based 

MRA models 

 

Fig. 18 Classification of validation soil dataset using Eqs. 209 and 201 

based MRA models  

 

The testing dataset has more soil specimens than validation 
soil specimens. Therefore, better results of soil classification 
are achieved during the testing of MRA models. Finally, the 
number of soil datasets also affects the prediction of soil classi-
fication. 

6 SENSITIVITY ANALYSIS 

The cosine amplitude method determines the sensitivity of 
input parameters for soil LL, PL, PI, OMC, and MDD. The fol-
lowing equation illustrates the cosine amplitude method. 

 

(224) 

Where Xi and Yi are input and output parameters, respec-
tively, the sensitivity (Ss) ranges between 0 and 1. The value of 
sensitivity (Ss) closer to one shows the strength between input 
and output parameters of models. If the input and output pa-
rameters have no relation, the Ss value is zero. The liquid lim-
it, plastic limit, plasticity index is predicted using sand and 
fine content.  

Similarly, the OMC and MDD of soil are predicted using 
sand content, fine content, liquid limit, plastic limit, and plas-
ticity index. The sensitivity analysis is performed for liquid 
limit, plastic limit, plasticity index, optimum moisture content, 
and maximum dry density at different percentages of training 
datasets, as shown in Figs. 19-23. 

 

Fig. 19. Sensitivity analysis for liquid limit 

 

Fig. 20. Sensitivity analysis for plastic limit 
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Fig. 21. Sensitivity analysis for plasticity index 

 

Fig. 22 Sensitivity analysis for optimum moisture cotent 

 

Fig. 23. Sensitivity analysis for maximum dry density 

The sensitivity of sand and fine content for liquid limit, 
plastic limit, and plasticity index is shown in Fig. 14 (a), (b), 
and (c), respectively. The fine content is highly sensitive for 
liquid limit, plastic limit, and plasticity index than sand con-
tent. In other words, the consistency limits of soil are highly 
influenced by fine content. The sensitivity of sand, fine con-
tent, liquid limit, plastic limit, and plasticity index for OMC 
and MDD is shown in Fig. 14 (d) and (e), respectively. Fig. 14 
(d) shows that the sand content is less influencing in predict-
ing the OMC of soil than other input parameters. Fig. 14 (d) 
also shows that the OMC is highly influenced by FC, LL, PL, 
and PI. On the other hand, the maximum dry density is highly 
influenced by S, FC, LL, PL, and PI, as shown in Fig. 14 (e). It 
is also observed that the sensitivity of input parameters in-
creases by increasing the percentage of training datasets. 
 

7 CONCLUSIONS 

The following conclusions are mapped in the present study: 

 The coefficient of determination (R2) comparison of simple 
linear and polynomial regression showed that the nonline-
ar approach predicts the consistency limits and compaction 
parameters better than the linear approach. 

 The sand and fine content strongly correlate with the liq-
uid limit, plasticity index, plastic limit of soil. The best ar-
chitecture LL MRA model predicted LL with the testing 
and validation performance of 0.9226 and 0.8548, respec-
tively. Similarly, the best architecture PL MRA model pre-
dicted PL with the testing and validation performance of 
0.7461 and 0.7529, respectively. The best architecture PI 
MRA model also predicted PI with the testing performance 
of 0.8326. Therefore, it is concluded that a strong relation-
ship or more than 0.65 correlation coefficient of pair of da-
tasets can predict LL, PL, and PI of soil with a performance 
of 0.70-1.0 and slightest error. 

 The plastic limit strongly correlates with the OMC and 
MDD of soil. The relationship of sand content, fine content, 
liquid limit, and plasticity index with OMC and MDD im-
proves (strong to very strong) by increasing the percentage 
of training datasets.  

 If the pair of datasets has a strong or very strong correla-
tion, a multiple linear regression model can achieve a pre-
diction performance of more than 0.85. 

 The number of validation datasets was less than the test 
datasets. Therefore, the validation performance was affect-
ed while predicting the LL, PL, PI, OMC, and MDD for val-
idation datasets. 

 The strong or very strong relationship of pair of datasets 
decreases the overfitting of the MRA model while predict-
ing consistency limits and compaction parameters. 

 The cosine amplitude sensitivity analysis showed that the 
LL, PL, and PI are highly influenced by fine content than 
sand content. The compaction parameters are highly influ-
enced by FC, LL, PL, and PI.  

Finally, it is concluded that the correlation coefficient affects 
the performance and overfitting of the regression models. The 
best prediction of compaction parameters and consistency 
limits can be achieved by a strongly or very strongly correlat-
ed pair of datasets. 

8 FUTURE SCOPE 

The present study has the following future scopes.  

i. The present study may be used for machine learning ap-

proaches to predict soil's compaction parameters, con-

sistency limits, and strength parameters. 

ii. The present case may be applied for deep and hybrid 

learning approaches to predict soil's compaction parame-

ters, consistency limits, and strength parameters. 

iii. A comparative study may be carried out for machine, 

deep, and hybrid learning approaches using the present re-

search work. 
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ABBREVIATIONS AND NOTATIONS 

ANFIS Adaptive neural fuzzy inference system 
ANN Artificial neural network 
CC Coefficient of correlation 
CH Inorganic clays of high plasticity 
CI Inorganic clays of medium plasticity 
CL Inorganic clays of low plasticity 
COD/R2 Coefficient of determination 
Cu Coefficient of uniformity 
D30 Particle size at 30% cumulative finer 
D50 Particle size at 50% cumulative finer 
FC Fine content 
FD Frequency distribution 
G Gravel content 
GEP Gene expression programming 
GMDH Group method of data handling 
J Min-max normalization 
LL Liquid limit 
LL' Predicted liquid limit 
MAE Mean absolute error 
MARS Multivariate adaptive regression splines 
MDD Maximum dry density 
MDD' Predicted maximum dry density 
MH Inorganic silts of high compressibility 
MI Inorganic silts of medium compressibility 
ML Inorganic silts of non to low plasticity 
MLR Multi-linear regression 
MRA Multiple regression analysis 
OH Organic clays of medium to high plasticity 
OI Organic silts of medium plasticity 
OL Organic silts of low plasticity 
OMC Optimum moisture content 
OMC' Predicted optimum moisture content 
PI Plasticity index 
PI' Predicted plasticity index 
PL Plastic limit 
PL' Predicted plastic limit 
R Performance 
RMSE Root mean square error 
S Sand content 
Ss Sensitivity 
St. Dev. Standard deviation 
SVM Support vector machine  
x Test value 
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